from upstash_vector import Index
import random
index = Index.from_env()
# Generate a random vector for similarity comparison
dimension = 128 # Adjust based on your index's dimension
query_vector = [random.random() for _ in range(dimension)]
# Set parameters for the query
include_metadata = True
include_vector = False
top_k = 5
# Execute the query
query_result = index.query(
vector=query_vector,
include_metadata=include_metadata,
include_vector=include_vector,
top_k=top_k
)
# Print the query result
for result in query_result:
print("Score:", result.score)
print("ID:", result.id)
print("Vector:", result.vector)
print("Metadata:", result.metadata)
print()